3.4.79 \(\int \frac {x^5}{(a+b x^3) \sqrt {c+d x^3}} \, dx\) [379]

Optimal. Leaf size=74 \[ \frac {2 \sqrt {c+d x^3}}{3 b d}+\frac {2 a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 b^{3/2} \sqrt {b c-a d}} \]

[Out]

2/3*a*arctanh(b^(1/2)*(d*x^3+c)^(1/2)/(-a*d+b*c)^(1/2))/b^(3/2)/(-a*d+b*c)^(1/2)+2/3*(d*x^3+c)^(1/2)/b/d

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 74, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {457, 81, 65, 214} \begin {gather*} \frac {2 a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 b^{3/2} \sqrt {b c-a d}}+\frac {2 \sqrt {c+d x^3}}{3 b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^5/((a + b*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(2*Sqrt[c + d*x^3])/(3*b*d) + (2*a*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(3*b^(3/2)*Sqrt[b*c - a
*d])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 81

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(c + d*x)^
(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^5}{\left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx &=\frac {1}{3} \text {Subst}\left (\int \frac {x}{(a+b x) \sqrt {c+d x}} \, dx,x,x^3\right )\\ &=\frac {2 \sqrt {c+d x^3}}{3 b d}-\frac {a \text {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^3\right )}{3 b}\\ &=\frac {2 \sqrt {c+d x^3}}{3 b d}-\frac {(2 a) \text {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{3 b d}\\ &=\frac {2 \sqrt {c+d x^3}}{3 b d}+\frac {2 a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 b^{3/2} \sqrt {b c-a d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.10, size = 75, normalized size = 1.01 \begin {gather*} \frac {2 \left (\frac {\sqrt {b} \sqrt {c+d x^3}}{d}-\frac {a \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {-b c+a d}}\right )}{\sqrt {-b c+a d}}\right )}{3 b^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^5/((a + b*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(2*((Sqrt[b]*Sqrt[c + d*x^3])/d - (a*ArcTan[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[-(b*c) + a*d]])/Sqrt[-(b*c) + a*d])
)/(3*b^(3/2))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.37, size = 448, normalized size = 6.05 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/(b*x^3+a)/(d*x^3+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3*(d*x^3+c)^(1/2)/b/d+1/3*I*a/b/d^2*2^(1/2)*sum(1/(a*d-b*c)*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c
*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*
d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+
c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-
c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*
d^2)^(1/3))^(1/2),1/2*b/d*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d
-3*(-c*d^2)^(2/3)*_alpha-3*c*d)/(a*d-b*c),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(
-c*d^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b+a))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more detail

________________________________________________________________________________________

Fricas [A]
time = 2.92, size = 205, normalized size = 2.77 \begin {gather*} \left [\frac {\sqrt {b^{2} c - a b d} a d \log \left (\frac {b d x^{3} + 2 \, b c - a d + 2 \, \sqrt {d x^{3} + c} \sqrt {b^{2} c - a b d}}{b x^{3} + a}\right ) + 2 \, \sqrt {d x^{3} + c} {\left (b^{2} c - a b d\right )}}{3 \, {\left (b^{3} c d - a b^{2} d^{2}\right )}}, -\frac {2 \, {\left (\sqrt {-b^{2} c + a b d} a d \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-b^{2} c + a b d}}{b d x^{3} + b c}\right ) - \sqrt {d x^{3} + c} {\left (b^{2} c - a b d\right )}\right )}}{3 \, {\left (b^{3} c d - a b^{2} d^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[1/3*(sqrt(b^2*c - a*b*d)*a*d*log((b*d*x^3 + 2*b*c - a*d + 2*sqrt(d*x^3 + c)*sqrt(b^2*c - a*b*d))/(b*x^3 + a))
 + 2*sqrt(d*x^3 + c)*(b^2*c - a*b*d))/(b^3*c*d - a*b^2*d^2), -2/3*(sqrt(-b^2*c + a*b*d)*a*d*arctan(sqrt(d*x^3
+ c)*sqrt(-b^2*c + a*b*d)/(b*d*x^3 + b*c)) - sqrt(d*x^3 + c)*(b^2*c - a*b*d))/(b^3*c*d - a*b^2*d^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{5}}{\left (a + b x^{3}\right ) \sqrt {c + d x^{3}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5/(b*x**3+a)/(d*x**3+c)**(1/2),x)

[Out]

Integral(x**5/((a + b*x**3)*sqrt(c + d*x**3)), x)

________________________________________________________________________________________

Giac [A]
time = 1.41, size = 64, normalized size = 0.86 \begin {gather*} -\frac {2 \, {\left (\frac {a d \arctan \left (\frac {\sqrt {d x^{3} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{\sqrt {-b^{2} c + a b d} b} - \frac {\sqrt {d x^{3} + c}}{b}\right )}}{3 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

-2/3*(a*d*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*b) - sqrt(d*x^3 + c)/b)/d

________________________________________________________________________________________

Mupad [B]
time = 5.10, size = 86, normalized size = 1.16 \begin {gather*} \frac {2\,\sqrt {d\,x^3+c}}{3\,b\,d}+\frac {a\,\ln \left (\frac {a\,d-2\,b\,c-b\,d\,x^3+\sqrt {b}\,\sqrt {d\,x^3+c}\,\sqrt {a\,d-b\,c}\,2{}\mathrm {i}}{b\,x^3+a}\right )\,1{}\mathrm {i}}{3\,b^{3/2}\,\sqrt {a\,d-b\,c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5/((a + b*x^3)*(c + d*x^3)^(1/2)),x)

[Out]

(2*(c + d*x^3)^(1/2))/(3*b*d) + (a*log((a*d - 2*b*c + b^(1/2)*(c + d*x^3)^(1/2)*(a*d - b*c)^(1/2)*2i - b*d*x^3
)/(a + b*x^3))*1i)/(3*b^(3/2)*(a*d - b*c)^(1/2))

________________________________________________________________________________________